

Django Waffle

Waffle is feature flipper for Django. You can define the conditions for
which a flag should be active, and use it in a number of ways.

	Version

	2.3.0

	Code

	https://github.com/django-waffle/django-waffle

	License

	BSD; see LICENSE file

	Issues

	https://github.com/django-waffle/django-waffle/issues

Contents:

	Why Waffle?

	Getting Started
	Requirements

	Installation

	Upgrading

	Configuring Waffle

	Types
	Flags

	Switches

	Samples

	Using Waffle
	Using Waffle in views

	Decorating entire views

	Mixins for Class Based Views

	Using Waffle in templates

	Using WaffleJS

	Managing Waffle data from the command line

	Testing with Waffle
	Automated testing with Waffle

	User testing with Waffle

	Contributing to Waffle

	Waffle’s goals

	Roadmap

Indices and tables

	Index

	Module Index

	Search Page

Why Waffle?

Feature flags [http://code.flickr.net/2009/12/02/flipping-out/] are a critical tool for continuously integrating and
deploying applications. Waffle is one of several options [https://www.djangopackages.com/grids/g/feature-flip/] for managing
feature flags in Django applications.

Waffle aims to

	provide a simple, intuitive API everywhere in your application;

	cover common use cases with batteries-included;

	be simple to install and manage;

	be fast and robust enough to use in production; and

	minimize dependencies and complexity.

Waffle has an active community [https://github.com/django-waffle/django-waffle/graphs/contributors] and gets fairly steady updates [https://github.com/django-waffle/django-waffle/pulse/monthly].

vs Gargoyle

The other major, active feature flag tool for Django is Disqus’s
Gargoyle [https://github.com/disqus/gargoyle]. Both support similar features, though Gargoyle offers more
options for building custom segments in exchange for some more
complexity and requirements.

Waffle in Production

Despite its pre-1.0 version number, Waffle has been used in production
for years at places like Mozilla, Yipit and TodaysMeet.

	Mozilla (Support, MDN, Addons, etc)

	TodaysMeet

	Yipit

(If you’re using Waffle in production and don’t mind being included
here, let me know or add yourself in a pull request!)

Getting Started

	Requirements

	Installation

	Upgrading

	Configuring Waffle

Requirements

Waffle depends only on Django (except for running Waffle’s tests) but does require certain Django features.

User Models

Waffle requires Django’s auth system [https://docs.djangoproject.com/en/dev/topics/auth/], in particular it requires both
a user model and Django’s groups. If you’re using a custom user
model [https://docs.djangoproject.com/en/dev/topics/auth/customizing/#specifying-a-custom-user-model], this can be accomplished by including Django’s
PermissionsMixin [https://docs.djangoproject.com/en/dev/topics/auth/customizing/#custom-users-and-permissions], e.g.:

from django.contrib.auth import models

class MyUser(models.AbstractBaseUser, models.PermissionsMixin):

And of django.contrib.auth must be in INSTALLED_APPS, along with
its requirements [https://docs.djangoproject.com/en/dev/topics/auth/#installation].

Templates

Waffle provides template tags to check flags directly in templates.
Using these requires the request object in the template context,
which can be easily added with the request template context
processor [https://docs.djangoproject.com/en/dev/ref/settings/#template-context-processors]:

TEMPLATE_CONTEXT_PROCESSORS = (
 # ...
 'django.template.context_processors.request',
 # ...

Installation

After ensuring that the requirements are
met, installing Waffle is a simple process.

Getting Waffle

Waffle is hosted on PyPI [http://pypi.python.org/pypi/django-waffle] and can be installed with pip or
easy_install:

$ pip install django-waffle
$ easy_install django-waffle

Waffle is also available on GitHub [https://github.com/django-waffle/django-waffle]. In general, master should be
stable, but use caution depending on unreleased versions.

Settings

Add waffle to the INSTALLED_APPS setting, and
waffle.middleware.WaffleMiddleware to MIDDLEWARE, e.g.:

INSTALLED_APPS = (
 # ...
 'waffle',
 # ...
)

MIDDLEWARE = (
 # ...
 'waffle.middleware.WaffleMiddleware',
 # ...
)

Jinja Templates

Changed in version 0.19.

If you are using Jinja2 templates, the django-jinja dependency is currently
unavailable with django 3.0 and greater; 2.x versions are compatible as well as 1.11.

Changed in version 0.11.

If you’re using Jinja2 templates, Waffle provides a Jinja2 extension
(waffle.jinja.WaffleExtension) to use Waffle directly from
templates. How you install this depends on which
adapter you’re using.

With django-jinja [https://pypi.python.org/pypi/django-jinja/], add the extension to the extensions list:

TEMPLATES = [
 {
 'BACKEND': 'django_jinja.backend.Jinja2',
 'OPTIONS': {
 'extensions': [
 # ...
 'waffle.jinja.WaffleExtension',
],
 # ...
 },
 # ...
 },
 # ...
]

With jingo [http://jingo.readthedocs.org/], add it to the JINJA_CONFIG['extensions'] list:

JINJA_CONFIG = {
 'extensions': [
 # ...
 'waffle.jinja.WaffleExtension',
],
 # ...
}

Database Schema

Waffle includes Django migrations [https://docs.djangoproject.com/en/dev/topics/migrations/] for creating the correct database
schema. If using Django >= 1.7, simply run the migrate management
command after adding Waffle to INSTALLED_APPS:

$ django-admin.py migrate

If you’re using a version of Django without migrations, you can run
syncdb to create the Waffle tables.

Upgrading

From v0.10.x to v0.11

Jinja2 Templates

Waffle no longer supports jingo’s <http://jingo.readthedocs.org/>
automatic helper import, but now ships with a Jinja2
<http://jinja.pocoo.org/> extension that supports multiple Jinja2
template loaders for Django. See the installation docs for details on how to install this
extension.

Configuring Waffle

There are a few global settings you can define to adjust Waffle’s
behavior.

	WAFFLE_COOKIE

	The format for the cookies Waffle sets. Must contain %s.
Defaults to dwf_%s.

	WAFFLE_TEST_COOKIE

	The format for the cookies Waffle sets for user testing. Must contain %s.
Defaults to dwft_%s.

	WAFFLE_FLAG_DEFAULT

	When a Flag is undefined in the database, Waffle considers it
False. Set this to True to make Waffle consider undefined
flags True. Defaults to False.

	WAFFLE_FLAG_MODEL

	The model that will be use to keep track of flags. Defaults to waffle.Flag
which allows user- and group-based flags. Can be swapped for a different Flag model
that allows flagging based on other things, such as an organization or a company
that a user belongs to. Analogous functionality to Django’s extendable User models.
Needs to be set at the start of a project, as the Django migrations framework does not
support changing swappable models after the initial migration.

	WAFFLE_SWITCH_DEFAULT

	When a Switch is undefined in the database, Waffle considers it
False. Set this to True to make Waffle consider undefined
switches True. Defaults to False.

	WAFFLE_SAMPLE_DEFAULT

	When a Sample is undefined in the database, Waffle considers it
False. Set this to True to make Waffle consider undefined
samples True. Defaults to False.

	WAFFLE_MAX_AGE

	How long should Waffle cookies last? (Integer, in seconds.) Defaults
to 2529000 (one month).

	WAFFLE_READ_FROM_WRITE_DB

	When calling *_is_active methods, Waffle attempts to retrieve a cached
version of the object, falling back to the database if necessary. In high-
traffic scenarios with multiple databases (e.g. a primary being replicated
to a readonly pool) this introduces the risk that a stale version of the
object might be cached if one of these methods is called immediately after
an update. Set this to True to ensure Waffle always reads Flags,
Switches, and Samples from the DB configured for writes on cache misses.

	WAFFLE_OVERRIDE

	Allow all Flags to be controlled via the querystring (to allow
e.g. Selenium to control their behavior). Defaults to False.

	WAFFLE_SECURE

	Whether to set the secure flag on cookies. Defaults to True.

	WAFFLE_CACHE_PREFIX

	Waffle tries to store objects in cache pretty aggressively. If you
ever upgrade and change the shape of the objects (for example
upgrading from <0.7.5 to >0.7.5) you’ll want to set this to
something other than 'waffle:'. If you’re using memcached this should
be ASCII only, as that’s all it supports.

	WAFFLE_CACHE_NAME

	Which cache to use. Defaults to 'default'.

	WAFFLE_CREATE_MISSING_FLAGS

	If Waffle encounters a reference to a flag that is not in the database, should Waffle create the flag?
If true new flags are created and set to the value of WAFFLE_FLAG_DEFAULT
Defaults to False.

	WAFFLE_CREATE_MISSING_SWITCHES

	If Waffle encounters a reference to a switch that is not in the database, should Waffle create the sample?
If true new switches are created and set to the value of WAFFLE_SWITCH_DEFAULT
Defaults to False.

	WAFFLE_CREATE_MISSING_SAMPLES

	If Waffle encounters a reference to a sample that is not in the database, should Waffle create the sample?
If true new samples are created and set to the value of WAFFLE_SAMPLE_DEFAULT
Defaults to False.

	WAFFLE_LOG_MISSING_FLAGS

	If Waffle encounters a reference to a flag that is not in the database, should Waffle log it?
The value describes the level of wanted warning, possible values are all levels know by pythons default logging,
e.g. logging.WARNING.
Defaults to None.

	WAFFLE_LOG_MISSING_SWITCHES

	If Waffle encounters a reference to a switch that is not in the database, should Waffle log it?
The value describes the level of wanted warning, possible values are all levels know by pythons default logging,
e.g. logging.WARNING.
Defaults to None.

	WAFFLE_LOG_MISSING_SAMPLES

	If Waffle encounters a reference to a sample that is not in the database,, should Waffle log it?
The value describes the level of wanted warning, possible values are all levels know by pythons default logging,
e.g. logging.WARNING.
Defaults to None.

Types

Waffle supports three types of feature flippers:

	Flags

	Switches

	Samples

Flags

Flags are the most robust, flexible method of rolling out a feature with
Waffle. Flags can be used to enable a feature for specific users,
groups, users meeting certain criteria (such as being authenticated, or
superusers) or a certain percentage of visitors.

How Flags Work

Flags compare the current request [https://docs.djangoproject.com/en/dev/topics/http/urls/#how-django-processes-a-request] to their criteria to decide whether
they are active. Consider this simple example:

if flag_is_active(request, 'foo'):
 pass

The flag_is_active function takes two arguments, the
request, and the name of a flag. Assuming this flag (foo) is defined
in the database, Waffle will make roughly the following decisions:

	Is WAFFLE_OVERRIDE active and if so does this request specify a
value for this flag? If so, use that value.

	If not, is the flag set to globally on or off (the Everyone
setting)? If so, use that value.

	If not, is the flag in Testing mode, and does the request specify a
value for this flag? If so, use that value and set a testing cookie.

	If not, does the current user meet any of our criteria? If so, the
flag is active.

	If not, does the user have an existing cookie set for this flag? If
so, use that value.

	If not, randomly assign a value for this user based on the
Percentage and set a cookie.

Flag Attributes

Flags can be administered through the Django admin site [https://docs.djangoproject.com/en/dev/ref/contrib/admin/] or the
command line. They have the following attributes:

	Name

	The name of the flag. Will be used to identify the flag everywhere.

	Everyone

	Globally set the Flag, overriding all other criteria. Leave as
Unknown to use other criteria.

	Testing

	Can the flag be specified via a querystring parameter? See
below.

	Percent

	A percentage of users for whom the flag will be active, if no other
criteria applies to them.

	Superusers

	Is this flag always active for superusers?

	Staff

	Is this flag always active for staff?

	Authenticated

	Is this flag always active for authenticated users?

	Languages

	Is the LANGUAGE_CODE of the request in this list?
(Comma-separated values.)

	Groups

	A list of group IDs for which this flag will always be active.

	Users

	A list of user IDs for which this flag will always be active.

	Rollout

	Activate Rollout mode? See below.

	Note

	Describe where the flag is used.

A Flag will be active if any of the criteria are true for the current
user or request (i.e. they are combined with or). For example, if a
Flag is active for superusers, a specific group, and 12% of visitors,
then it will be active if the current user is a superuser or if they
are in the group or if they are in the 12%.

Note

Users are assigned randomly when using Percentages, so in practice
the actual proportion of users for whom the Flag is active will
probably differ slightly from the Percentage value.

Custom Flag Models

For many cases, the default Flag model provides all the necessary functionality. It allows
flagging individual Users and Groups. If you would like flags to be applied to
different things, such as companies a User belongs to, you can use a custom flag model.

The functionality uses the same concepts as Django’s custom user models, and a lot of this will
be immediately recognizable.

An application needs to define a WAFFLE_FLAG_MODEL settings. The default is waffle.Flag
but can be pointed to an arbitrary object.

Note

It is not possible to change the Flag model and generate working migrations. Ideally, the flag
model should be defined at the start of a new project. This is a limitation of the swappable
Django magic. Please use magic responsibly.

The custom Flag model must inherit from waffle.models.AbstractBaseFlag. If you want the existing
User and Group based flagging and would like to add more entities to it,
you may extend waffle.models.AbstractUserFlag.

If you use a custom flag model to apply to models beyond Users and Groups, you must run Django’s
makemigrations before running migrations as outlined in the installation docs.

If you need to reference the class that is being used as the Flag model in your project, use the
get_waffle_flag_model() method. If you reference the Flag a lot, it may be convenient to add
Flag = get_waffle_flag_model() right below your imports and reference the Flag model as if it had
been imported directly.

Example:

settings.py
WAFFLE_FLAG_MODEL = 'myapp.Flag'

models.py
from waffle.models import AbstractUserFlag, CACHE_EMPTY
from waffle.utils import get_setting, keyfmt, get_cache

class Flag(AbstractUserFlag):
 FLAG_COMPANIES_CACHE_KEY = 'FLAG_COMPANIES_CACHE_KEY'
 FLAG_COMPANIES_CACHE_KEY_DEFAULT = 'flag:%s:companies'

 companies = models.ManyToManyField(
 Company,
 blank=True,
 help_text=_('Activate this flag for these companies.'),
)

 def get_flush_keys(self, flush_keys=None):
 flush_keys = super(Flag, self).get_flush_keys(flush_keys)
 companies_cache_key = get_setting(Flag.FLAG_COMPANIES_CACHE_KEY, Flag.FLAG_COMPANIES_CACHE_KEY_DEFAULT)
 flush_keys.append(keyfmt(companies_cache_key, self.name))
 return flush_keys

 def is_active_for_user(self, user):
 is_active = super(Flag, self).is_active_for_user(user)
 if is_active:
 return is_active

 if getattr(user, 'company_id', None):
 company_ids = self._get_company_ids()
 if user.company_id in company_ids:
 return True

 def _get_company_ids(self):
 cache = get_cache()
 cache_key = keyfmt(
 get_setting(Flag.FLAG_COMPANIES_CACHE_KEY, Flag.FLAG_COMPANIES_CACHE_KEY_DEFAULT),
 self.name
)
 cached = cache.get(cache_key)
 if cached == CACHE_EMPTY:
 return set()
 if cached:
 return cached

 company_ids = set(self.companies.all().values_list('pk', flat=True))
 if not company_ids:
 cache.add(cache_key, CACHE_EMPTY)
 return set()

 cache.add(cache_key, company_ids)
 return company_ids

admin.py
from waffle.admin import FlagAdmin as WaffleFlagAdmin

class FlagAdmin(WaffleFlagAdmin):
 raw_id_fields = tuple(list(WaffleFlagAdmin.raw_id_fields) + ['companies'])
admin.site.register(Flag, FlagAdmin)

Testing Mode

See User testing with Waffle.

Rollout Mode

When a Flag is activated by chance, Waffle sets a cookie so the flag
will not flip back and forth on subsequent visits. This can present a
problem for gradually deploying new features: users can get “stuck” with
the Flag turned off, even as the percentage increases.

Rollout mode addresses this by changing the TTL of “off” cookies. When
Rollout mode is active, cookies setting the Flag to “off” are session
cookies, while those setting the Flag to “on” are still controlled by
WAFFLE_MAX_AGE.

Effectively, Rollout mode changes the Percentage from “percentage of
visitors” to “percent chance that the Flag will be activated per visit.”

Auto Create Missing

When a flag is evaluated in code that is missing in the database the
flag returns the WAFFLE_FLAG_DEFAULT
value but does not create a flag in the database. If you’d like waffle
to create missing flags in the database whenever it encounters a
missing flag you can set WAFFLE_CREATE_MISSING_FLAGS to True. Missing flags will be created in
the database and the value of the Everyone flag attribute will be
set to WAFFLE_FLAG_DEFAULT in the
auto-created database record.

Log Missing

Whether or not you enabled Auto Create Missing Flags,
it can be practical to be informed that a flag was or is missing.
If you’d like waffle to log a warning, error, … you can set WAFFLE_LOG_MISSING_FLAGS to any level known by Python default logger.

Switches

Switches are simple booleans: they are on or off, for everyone, all the
time. They do not require a request object and can be used in other
contexts, such as management commands and tasks.

Switch Attributes

Switches can be administered through the Django admin site [https://docs.djangoproject.com/en/dev/ref/contrib/admin/] or the
command line. They have the following attributes:

	Name

	The name of the Switch.

	Active

	Is the Switch active or inactive.

	Note

	Describe where the Switch is used.

Auto Create Missing

When a switch is evaluated in code that is missing in the database the
switch returns the WAFFLE_SWITCH_DEFAULT
value but does not create a switch in the database. If you’d like waffle
to create missing switches in the database whenever it encounters a
missing switch you can set WAFFLE_CREATE_MISSING_SWITCHES to True. Missing switches will be created in
the database and the value of the Active switch attribute will be
set to WAFFLE_SWITCH_DEFAULT in the
auto-created database record.

Log Missing

Whether or not you enabled Auto Create Missing Switch,
it can be practical to be informed that a switch was or is missing.
If you’d like waffle to log a warning, error, … you can set WAFFLE_LOG_MISSING_FLAGS to any level known by Python default logger.

Samples

Samples are on a given percentage of the time. They do not require a
request object and can be used in other contexts, such as management
commands and tasks.

Warning

Sample values are random: if you check a Sample twice, there is no
guarantee you will get the same value both times. If you need to
rely on the value more than once, you should store it in a variable.

YES
foo_on = sample_is_active('foo')
if foo_on:
 pass

...later...
if foo_on:
 pass

NO!
if sample_is_active('foo'):
 pass

...later...
if sample_is_active('foo'): # INDEPENDENT of the previous check
 pass

Sample Attributes

Samples can be administered through the Django admin site [https://docs.djangoproject.com/en/dev/ref/contrib/admin/] or the
command line. They have the following attributes:

	Name

	The name of the Sample.

	Percent

	A number from 0.0 to 100.0 that determines how often the Sample
will be active.

	Note

	Describe where the Sample is used.

Auto Create Missing

When a sample is evaluated in code that is missing in the database the
sample returns the WAFFLE_SAMPLE_DEFAULT
value but does not create a sample in the database. If you’d like
waffle to create missing samples in the database whenever it
encounters a missing sample you can set
WAFFLE_CREATE_MISSING_SAMPLES to
True. If WAFFLE_SAMPLE_DEFAULT is True then the
Percent attribute of the sample will be created as 100.0 (so that
when the sample is checked it always evaluates to
True). Otherwise the value will be set to 0.0 so that the sample
always evaluates to False.

Log Missing

Whether or not you enabled Auto Create Missing Sample,
it can be practical to be informed that a sample was or is missing.
If you’d like waffle to log a warning, error, … you can set WAFFLE_LOG_MISSING_SAMPLES to any level known by Python default logger.

Using Waffle

Waffle provides a simple API to check the state of flags, switches, and samples in views and templates, and even on the client in
JavaScript.

	Using Waffle in views

	Decorating entire views

	Mixins for Class Based Views

	Using Waffle in templates

	Using WaffleJS

	Managing Waffle data from the command line

Using Waffle in views

Waffle provides simple methods to test flags,
switches, or samples in
views (or, for switches and samples, anywhere else you’re writing
Python).

Flags

waffle.flag_is_active(request, 'flag_name')

Returns True if the flag is active for this request, else False.
For example:

import waffle

def my_view(request):
 if waffle.flag_is_active(request, 'flag_name'):
 """Behavior if flag is active."""
 else:
 """Behavior if flag is inactive."""

Switches

waffle.switch_is_active('switch_name')

Returns True if the switch is active, else False.

Samples

waffle.sample_is_active('sample_name')

Returns True if the sample is active, else False.

Warning

See the warning in the Sample chapter.

Decorating entire views

Waffle provides decorators to wrap an entire view in a flag or switch. (Due to their
always-random nature, no decorator is provided for samples.)

When the flag or switch is active, the view executes normally. When it
is inactive, the view returns a 404. Optionally, you can provide a
view or URL name where the decorator can redirect to if you don’t want
to show a 404 page when the flag or switch is inactive.

Flags

from waffle.decorators import waffle_flag

@waffle_flag('flag_name')
def myview(request):
 pass

@waffle_flag('flag_name', 'url_name_to_redirect_to')
def myotherview(request):
 pass

Switches

from waffle.decorators import waffle_switch

@waffle_switch('switch_name')
def myview(request):
 pass

@waffle_switch('switch_name', 'url_name_to_redirect_to')
def myotherview(request):
 pass

Inverting Decorators

Both waffle_flag and waffle_switch can be reversed (i.e. they
will raise a 404 if the flag or switch is active, and otherwise
execute the view normally) by prepending the name of the flag or switch
with an exclamation point: !.

@waffle_switch('!switch_name')
def myview(request):
 """Only runs if 'switch_name' is OFF."""

Mixins for Class Based Views

Waffle provides mixins to add to Class Based Views.

When the flag or switch is active, or a sample returns True, the view executes normally.
When it is inactive, the view returns a 404.

WaffleFlagMixin

from waffle.mixins import WaffleFlagMixin

class MyClass(WaffleFlagMixin, View):
 waffle_flag = "my_flag"

WaffleSwitchMixin

from waffle.mixins import WaffleSwitchMixin

class MyClass(WaffleSwitchMixin, View):
 waffle_switch= "my_switch"

WaffleSampleMixin

from waffle.mixins import WaffleSampleMixin

class MyClass(WaffleSampleMixin, View):
 waffle_sample= "my_sample"

Using Waffle in templates

Waffle makes it easy to test flags, switches, and samples in templates to flip
features on the front-end. It includes support for both Django’s
built-in templates and for Jinja2 [http://jinja.pocoo.org/].

Warning

Before using samples in templates, see the warning in the
Sample chapter.

Django Templates

Load the waffle_tags template tags:

{% load waffle_tags %}

In Django templates, Waffle provides three new block types, flag,
switch, and sample, that function like if blocks. Each block
supports an optional else to be rendered if the flag, switch, or
sample in inactive.

Flags

{% flag "flag_name" %}
 flag_name is active!
{% else %}
 flag_name is inactive
{% endflag %}

Switches

{% switch "switch_name" %}
 switch_name is active!
{% else %}
 switch_name is inactive
{% endswitch %}

Samples

{% sample "sample_name" %}
 sample_name is active!
{% else %}
 sample_name is inactive
{% endsample %}

Jinja Templates

When used with Jinja2 [http://jinja.pocoo.org/], Waffle provides a waffle object in the Jinja
template context that can be used with normal if statements. Because
these are normal if statements, you can use else or if not
as normal.

Flags

{% if waffle.flag('flag_name') %}
 flag_name is active!
{% endif %}

Switches

{% if waffle.switch('switch_name') %}
 switch_name is active!
{% endif %}

Samples

{% if waffle.sample('sample_name') %}
 sample_name is active!
{% endif %}

Using WaffleJS

Waffle supports using flags, switches, and samples in JavaScript
(“WaffleJS”) either via inline script or an external script.

Warning

Unlike samples when used in Python, samples in WaffleJS are only
calculated once and so are consistent.

The WaffleJS waffle object

WaffleJS exposes a global waffle object that gives access to flags,
switches, and samples.

Methods

These methods can be used exactly like their Python equivalents:

	waffle.flag_is_active(flag_name)

	waffle.switch_is_active(switch_name)

	waffle.sample_is_active(sample_name)

Members

WaffleJS also directly exposes dictionaries of each type, where keys are
the names and values are true or false:

	waffle.FLAGS

	waffle.SWITCHES

	waffle.SAMPLES

Installing WaffleJS

As an external script

Using the wafflejs view requires adding Waffle to your URL
configuration. For example, in your ROOT_URLCONF:

urlpatterns = patterns('',
 (r'^', include('waffle.urls')),
)

This adds a route called wafflejs, which you can use with the
url template tag:

<script src="{% url 'wafflejs' %}"></script>

As an inline script

To avoid an extra request, you can also use the wafflejs template
tag to include WaffleJS as an inline script:

{% load waffle_tags %}
<script>
 {% wafflejs %}
</script>

Managing Waffle data from the command line

Aside the Django admin interface, you can use the command line tools to
manage all your waffle objects.

Flags

Use manage.py to change the values of your flags:

$./manage.py waffle_flag name-of-my-flag --everyone --percent=47

Use --everyone to turn on and --deactivate to turn off the flag.
Set a percentage with --percent or -p. Set the flag on for
superusers (--superusers), staff (--staff) or authenticated
(--authenticated) users. Set the rollout mode on with --rollout
or -r.

If the flag doesn’t exist, add --create to create it before setting
its values:

$./manage.py waffle_flag name-of-my-flag --deactivate --create

To list all the existing flags, use -l:

$./manage.py waffle_flag -l
Flags:
name-of-my-flag

Switches

Use manage.py to change the values of your switches:

$./manage.py waffle_switch name-of-my-switch off

You can set a switch to on or off. If that switch doesn’t exist,
add --create to create it before setting its value:

$./manage.py waffle_switch name-of-my-switch on --create

To list all the existing switches, use -l:

$./manage.py waffle_switch -l
Switches:
name-of-my-switch on

Samples

Use manage.py to change the values of your samples:

$./manage.py waffle_sample name-of-my-sample 100

You can set a sample to any floating value between 0.0 and
100.0. If that sample doesn’t exist, add --create to create it
before setting its value:

$./manage.py waffle_sample name-of-my-sample 50.0 --create

To list all the existing samples, use -l:

$./manage.py waffle_sample -l
Samples:
name-of-my-sample: 50%

Deleting Data

Use manage.py to delete a batch of flags, switches, and/or samples:

$./manage.py waffle_delete --switches switch_name_0 switch_name_1 --flags flag_name_0 flag_name_1 --samples sample_name_0 sample_name_1

Pass a list of switch, flag, or sample names to the command as keyword arguments and they will be deleted from the database.

Testing with Waffle

“Testing” takes on at least two distinct meanings with Waffle:

	Testing your application with automated tools

	Testing your feature with users

For the purposes of this chapter, we’ll refer to the former as
“automated testing” and the latter as “user testing” for clarity.

	Automated testing with Waffle

	User testing with Waffle

Automated testing

Automated testing encompasses things like unit and integration tests,
whether they use the Python/Django unittest framework or an external
tool like Selenium.

Waffle is often non-deterministic, i.e. it introduces true randomness to
the system-under-test, which is a nightmare for automated testing. Thus,
Waffle includes tools to re-introduce determinism in automated test
suites.

Read more about automated testing.

User testing

User testing occurs on both a (relatively) large scale with automated
metric collection and on a small, often one-to-one—such as testing
sessions with a user and research or turning on a feature within a
company or team.

Waffle does what it can to support these kinds of tests while still
remaining agnostic about metrics platforms.

Read more about user testing.

Automated testing with Waffle

Feature flags present a new challenge for writing tests. The test
database may not have Flags, Switches, or Samples defined, or they may
be non-deterministic.

My philosophy, and one I encourage you to adopt, is that tests should
cover both code paths, with any feature flags on and off. To do
this, you’ll need to make the code behave deterministically.

Here, I’ll cover some tips and best practices for testing your app
while using feature flags. I’ll talk specifically about Flags but this
can equally apply to Switches or Samples.

Unit tests

Waffle provides three context managers (that can also be used as
decorators) in waffle.testutils that make testing easier.

	override_flag

	override_sample

	override_switch

All three are used the same way:

with override_flag('flag_name', active=True):
 # Only 'flag_name' is affected, other flags behave normally.
 assert waffle.flag_is_active(request, 'flag_name')

Or:

@override_sample('sample_name', active=True)
def test_with_sample():
 # Only 'sample_name' is affected, and will always be True. Other
 # samples behave normally.
 assert waffle.sample_is_active('sample_name')

All three will restore the relevant flag, sample, or switch to its
previous state: they will restore the old values and will delete objects
that did not exist.

External test suites

Tests that run in a separate process, such as Selenium tests, may not
have access to the test database or the ability to mock Waffle values.

For tests that make HTTP requests to the system-under-test (e.g. with
Selenium [http://www.seleniumhq.org/] or PhantomJS [http://phantomjs.org/]) the WAFFLE_OVERRIDE setting makes it possible to control the value of any
Flag via the querystring.

For example, for a flag named foo, we can ensure that it is “on” for
a request:

GET /testpage?foo=1 HTTP/1.1

or that it is “off”:

GET /testpage?foo=0 HTTP/1.1

User testing with Waffle

Testing a feature (i.e. not testing the code)
with users usually takes one of two forms: small-scale tests with
individuals or known group, and large-scale tests with a subset of
production users. Waffle provides tools for the former and has some
suggestions for the latter.

Small-scale tests

There are two ways to control a flag for an individual user:

	add their account to the flag’s list of users, or

	use testing mode.

Querystring Parameter

Testing mode makes it possible to enable a flag via a querystring
parameter (like WAFFLE_OVERRIDE) but is unique for two reasons:

	it can be enabled and disabled on a flag-by-flag basis, and

	it only requires the querystring parameter once, then relies on
cookies.

If the flag we’re testing is called foo, then we can enable testing
mode, and send users to oursite.com/testpage?dwft_foo=1 (or =0)
and the flag will be on (or off) for them for the remainder of their
session.

Warning

Currently, the flag must be used by the first page they visit,
or the cookie will not get set. See #80 [https://github.com/django-waffle/django-waffle/issues/80] on GitHub.

Researchers can send a link with these parameters to anyone and then
observe or ask questions. At the end of their session, or when testing
mode is deactivated, they will call back to normal behavior.

For a small group, like a company or team, it may be worth creating a
Django group and adding or removing the group from the flag.

HTTP Header

In some cases, such as a backend API, it may be easier for a client to provide
an HTTP header instead of a querystring parameter.

When a flag, foo, is in testing mode, simply provide the HTTP header
DWFT-Foo: 1 (or 0) to turn the flag on (or off).

This feature can also allow for a downstream service to make the decison of
enabling/disabling a flag, and then propagating that decision to other upsteam
services, allowing for a more complete testing of more complex microservice
infrastructures.

Order of Precedence

Since there are multiple controls to explicitly enable and disable flags in
testing mode, it’s important to understand the order of precedence used to
determine when a flag is enabled/disabled when multiple controls are present at
once. If any one of these controls is present at all, the subsequent controls
will not be checked.

	Querystring Parameter

	HTTP Header

	Cookie

Large-scale tests

Large scale tests are tests along the lines of “roll this out to 5% of
users and observe the relevant metrics.” Since “the relevant metrics”
is very difficult to define across all sites, here are some thoughts
from my experience with these sorts of tests.

Client-side metrics

Google Analytics—and I imagine similar products—has the ability to
segment by page or session variables [https://developers.google.com/analytics/devguides/collection/upgrade/reference/gajs-analyticsjs#custom-vars]. If you want to A/B test a
conversion rate or funnel, or otherwise measure the impact on some
client-side metric, using these variables is a solid way to go. For
example, in GA, you might do the following to A/B test a landing page:

ga('set', 'dimension1', 'Landing Page Version {% flag "new_landing_page" %}2{% else %}1{% endif %}');

Similarly you might set session or visitor variables for funnel tests.

The exact steps to both set a variable like this and then to create
segments and examine the data will depend on your client-side analytics
tool. And, of course, this can be combined with other data and further
segmented if you need to.

Server-side metrics

I use StatsD [https://github.com/etsy/statsd] religiously. Sometimes Waffle is useful for load and
capacity testing in which case I want to observe timing data or error
rates.

Sometimes, it makes sense to create entirely new metrics, and measure
them directly, e.g.:

if flag_is_active('image-process-service'):
 with statsd.timer('imageservice'):
 try:
 processed = make_call_to_service(data)
 except ServiceError:
 statsd.incr('imageservice.error')
 else:
 statsd.incr('imageservice.success')
else:
 with statsd.timer('process-image'):
 processed = do_inline_processing(data)

Other times, existing data—e.g. timers on the whole view—isn’t going to
move. If you have enough data to be statistically meaningful, you can
measure the impact for a given proportion of traffic and derive the time
for the new code.

If a flag enabling a refactored codepath is set to 20% of users, and
average time has improved by 10%, you can calculate that you’ve improved
the speed by 50%!

You can use the following to figure out the average for requests using
the new code. Let \(t_{old}\) be the average time with the flag at
0%, \(t_{total}\) be the average time with the flag at \(p *
100%\). Then the average for requests using new code, \(t_{new}\)
is…

\[t_{new} = t_{old} - \frac{t_{old} - t_{total}}{p}\]

If you believe my math (you should check it!) then you can measure the
average with the flag at 0% to get \(t_{old}\) (let’s say 1.2
seconds), then at \(p * 100\) % (let’s say 20%, so \(p = 0.2\))
to get \(t_{total}\) (let’s say 1.08 seconds, a 10% improvement) and
you have enough to get the average of the new path.

\[t_{new} = 1.2 - \frac{1.2 - 1.08}{0.2} = 0.6\]

Wow, good work!

You can use similar methods to derive the impact on other factors.

Contributing to Waffle

Waffle is pretty simple to hack, and has a decent test suite! Here’s how
to patch Waffle, add tests, run them, and contribute changes.

Please open a new issue [https://github.com/django-waffle/django-waffle/issues/new] to discuss a new feature before beginning
work on it. Not all suggestions are accepted. The Goals may help guide which features are likely to be accepted.

Set Up

Setting up an environment is easy! You’ll want virtualenv and
pip, then just create a new virtual environment and install the
requirements:

$ mkvirtualenv waffle
$ pip install -r requirements.txt

Done!

Writing Patches

Fork [https://github.com/django-waffle/django-waffle/fork] Waffle and create a new branch off master for your patch. Run the
tests often:

$./run.sh test

Try to keep each branch to a single feature or bugfix.

Note

To update branches, please rebase onto master, do not merge
master into your branch.

Submitting Patches

Open a pull request on GitHub!

Before a pull request gets merged, it should be rebased onto master
and squashed into a minimal set of commits. Each commit should include
the necessary code, test, and documentation changes for a single “piece”
of functionality.

To be mergable, patches must:

	be rebased onto the latest master,

	be automatically mergeable,

	not break existing tests,

	not change existing tests without a very good reason,

	add tests for new code (bug fixes should include regression tests, new
features should have relevant tests),

	not introduce any new flake8 [https://pypi.python.org/pypi/flake8] errors (run ./run.sh lint),

	document any new features, and

	have a good commit message [http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html].

Regressions tests should fail without the rest of the patch and pass
with it.

Waffle’s goals

Note

This document is a work in progress. See the roadmap, too.

Waffle is designed to

	support continuous integration and deployment,

	support feature rollout,

	with minimum set-up time and learning,

	while covering common segments,

	and being fast and robust enough for production use.

Waffle is not designed to

	be secure, or be a replacement for permissions,

	cover all potential segments.

Roadmap

Note

This roadmap is subject to change, but represents the rough
direction I plan to go. For specific issues, see the current
milestones [https://github.com/django-waffle/django-waffle/milestones].

Waffle is already a useful library used in many production systems, but
it is not done evolving.

Present through pre-1.0

The immediate future is finishing common segment features and bug fixes.

0.10.2–0.11.x

0.10.2 [https://github.com/django-waffle/django-waffle/milestones/0.10.2] was primarily a docs overhaul with a major fix to how caching
works. It was combined with 0.11 [https://github.com/django-waffle/django-waffle/milestones/0.11]. It did include test utilities for
consumers.

0.11 [https://github.com/django-waffle/django-waffle/milestones/0.11] updated support, dropping 1.5 and adding 1.8, and overhauled Jinja
integration to be compatible with any Jinja2 helper, like jingo or—more
future-proof—django-jinja [https://niwinz.github.io/django-jinja/latest/].

0.11.1 is probably the last release of the 0.11.x [https://github.com/django-waffle/django-waffle/milestones/0.11.x] series. It added
support for Django 1.9 without deprecating any other versions.

0.12

0.12 [https://github.com/django-waffle/django-waffle/milestones/0.12] includes a couple of significant refactors designed to pay down
some of the debt that’s accrued in the past few years.

It also includes support for Django 1.10 and above.

0.13

0.13 [https://github.com/django-waffle/django-waffle/milestones/0.13] drops support for all versions of Django prior to 1.8, including
dropping South migrations (and finally being rid of the old issues with
them). Along with that, it changes the way settings are configured to be
more modern.

0.13 is about closing some long-standing feature gaps, like segmenting
by IP and User-Agent.

It also includes finally making a decision about
auto-create/data-in-settings.

Toward 1.0

There are no solid criteria for what makes 1.0 right now, but after
0.13, most outstanding issues will be resolved and Waffle will be in
very good shape. There are no plans for a 0.14, so it seems likely that
the next step after 0.13 would be some clean-up and finally a 1.0.

Beyond 1.0

tl;dr: Waffle2 may be a complete break from Waffle.

Waffle is one of the first Python libraries I created, you can see that
in the amount of code I left in __init__.py. It is also 5 years old,
and was created during a different period in my career, and in Django.

There are some philosophical issues with how Waffle is designed. Adding
new methods of segmenting users requires at least one new column each,
and increasing the cyclomatic complexity. Caching is difficult. The
requirements are stringent and no longer realistic (they were created
before Django 1.5). The distinction between Flags, Samples, and Switches
is confusing and triples the API surface area (Flags can easily act as
Switches, less easily as Samples). It is not extensible.

Some challenges also just accrue over time. Dropping support for Django
1.4, the current Extended Support Release, would significantly simplify
a few parts.

There is a simplicity to Waffle that I’ve always appreciated vs, say,
Gargoyle [https://github.com/disqus/gargoyle]. Not least of which is that Waffle works with the built-in
admin (or any other admin you care to use). I don’t have to write any
code to start using Waffle, other than an if block. Just add a row
and click some checkboxes. Most batteries are included. These are all
things that any new version of Waffle must maintain.

Still, if I want to write code to do some kind of custom segment that
isn’t common-enough to belong in Waffle, shouldn’t I be able to? (And,
if all the core segmenters were built as the same kind of extension, we
could lower the bar for inclusion.) If I only care about IP address and
percentage, it would be great to skip all the other checks that just
happen to be higher in the code.

I have rough sketches of what this looks like, but there are still some
significant sticking points, particularly around shoehorning all of this
into the existing Django admin. I believe it’s possible, just
potentially gross. (Then again, if it’s gross underneath but exposes a
pleasant UI, that’s not ideal, but it’s OK.)

The other big sticking point is that this won’t be a simple ALTER
TABLE wafle_flag ADD COLUMN upgrade; things will break.

I’ve been thinking what Waffle would be like if I designed it from
scratch today with slightly different goals, like extensibility. Beyond
1.0, it’s difficult to see continuing to add new features without this
kind of overhaul.

Index

 _static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Django Waffle

 		
 Why Waffle?

 		
 Getting Started

 		
 Requirements

 		
 Installation

 		
 Upgrading

 		
 Configuring Waffle

 		
 Types

 		
 Flags

 		
 Switches

 		
 Samples

 		
 Using Waffle

 		
 Using Waffle in views

 		
 Decorating entire views

 		
 Mixins for Class Based Views

 		
 Using Waffle in templates

 		
 Using WaffleJS

 		
 Managing Waffle data from the command line

 		
 Testing with Waffle

 		
 Automated testing with Waffle

 		
 User testing with Waffle

 		
 Contributing to Waffle

 		
 Waffle’s goals

 		
 Roadmap

_static/comment-bright.png

_static/ajax-loader.gif

